Math Logic: Model Theory \& Computability.
Lecture 20

Deduction theorem. For amy σ-formulas φ, ψ and σ-hurry T,

$$
T, \varphi \vdash \psi \quad \text { if } \quad T \vdash \varphi \rightarrow \psi
$$

Perot. $<$ Suppose $T \vdash \varphi \rightarrow \psi$. Then $T, \varphi+\varphi$, hence bs $M P, T, \varphi \vdash \psi$.
\Rightarrow Suppose $T_{1} \varphi \vdash \psi$ so sher is a prof $\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)$ of ψ tron T, φ. We show by incluction on n that there is a proof of $\varphi \rightarrow \psi$ from T. suppose for all icu there is a proof of $\varphi \rightarrow \psi_{i}$ tron T and we show that $T \vdash \varphi \rightarrow \psi_{n}$.
Casel: $\psi_{n} \in$ Axiom (σ) VT. Then by (al of previous proposition, $T \vdash \varphi \rightarrow \psi_{n}$.
Case 2: $\psi_{n}=\varphi$. Then $h_{y}(b)$ of previous proposition, $+\varphi \rightarrow \psi_{n}$, so $T+\varphi_{+} \psi_{n}$. Case 3: ψ_{n} is obtained foo ψ_{i}, ψ_{j} by MP. Than $\psi_{j}=\psi_{i} \rightarrow \psi_{n}$ and h_{y} induction hypothesis, we have $T \vdash \varphi \rightarrow \psi_{i}$ and $T \vdash \varphi \rightarrow\left(\psi_{i} \rightarrow \psi_{n}\right)$. By Axiom (2),

$$
\vdash\left(\varphi \rightarrow \psi_{i}\right) \rightarrow\left[\left(\varphi \rightarrow\left(\psi_{i} \rightarrow \psi_{n}\right)\right) \rightarrow\left(\varphi \rightarrow \psi_{n}\right)\right],
$$

so h_{j} applying $M P$ trice, we get $T \vdash \varphi \rightarrow \Psi_{n}$.
Prop. Let φ, ψ be σ-formulas ant v be a variable.
(a) $\forall(\neg \neg \varphi) \rightarrow \varphi$
(b) $t \varphi \rightarrow(\neg, \varphi)$
(c) $\vdash \varphi \rightarrow(\neg \varphi \rightarrow \psi)$ and $\forall \neg \varphi \rightarrow(\varphi \rightarrow \psi)$
(W_{e} can abbreviate Ruse as $(\varphi \wedge \neg \varphi) \rightarrow \psi$ anal $(\neg \varphi \wedge \varphi) \rightarrow \psi$.)
(d) $f(\varphi \rightarrow \psi) \rightarrow(\neg \psi \rightarrow \neg \varphi)$
(e) $\vdash \tau$, where $\tau:=\forall v(v=v)$.
$(f) \vdash \perp \rightarrow \varphi$, when $\mathcal{L}:=\neg \tau$
(g) $+\varphi(t / v) \rightarrow \exists v \varphi$, where t is a orterm that is OK to plyg-in for v in φ.

Proof. (a) B_{3} Deduction, it's enough to prove $\neg \neg \varphi \vdash \varphi$.
(i) Axiom $3: 1(\neg \varphi \rightarrow \neg \varphi) \rightarrow((\neg \varphi \rightarrow \neg \neg \varphi) \rightarrow \varphi)$
(2) $B_{y}(b)$ of prov. prop: $\forall \neg \varphi \rightarrow \neg \varphi$.
(3) $M P(2),(1):+(\neg \varphi \rightarrow \neg \neg \varphi) \rightarrow \varphi$.
(4) $B_{y}(\omega)$ of prev. prop: $\neg \neg \varphi \vdash \neg \varphi \rightarrow \neg \neg \varphi$.
(5) $M P(4),(3)=\operatorname{si\varphi } \vdash \varphi$.
(b) HW .
(c) By Dedaction, it is enough bo poove $\varphi, \rightarrow \varphi \vdash \psi$. Axion (3) gives $(-\psi \rightarrow \varphi) \rightarrow((\neg \varphi \rightarrow \neg \varphi) \rightarrow \psi)$, (a) of paev. pop gices $\varphi, \neg \varphi \vdash \neg \psi \rightarrow \varphi$ and $\varphi, \neg \varphi \vdash \neg \psi \rightarrow \neg \varphi$, and two applications of MP give $\varphi, \neg \varphi \vdash \psi$.
(d) By Dechaction, it's enongh to pove $\varphi \rightarrow \psi, \sim \psi r-\varphi$. By Axiom (3), $(\neg \neg \varphi \rightarrow \psi) \rightarrow((\neg \neg \varphi \rightarrow \neg \psi) \rightarrow \neg \varphi)$ and part (a) gives $\neg \neg \varphi \rightarrow \varphi$, then one can show wsing Axion (2) that we get $\varphi \rightarrow \psi \vdash \rightarrow \neg \varphi \psi$. Also, $\neg \Psi(-\neg \rightarrow \varphi \rightarrow \neg$ h; part (al at par. vop., so two MPs give $\varphi \rightarrow \psi, \neg \psi \vdash \neg \varphi$.
(e) If the equality axion (6.a), $\vdash v=v$ so gencalization axion (s) gives $\vdash \forall v(v=v)$.
(f) We aleand, have $\vdash \tau$ and $b_{j}(d), \forall \tau \rightarrow(\lambda \rightarrow \varphi)$, so MP gives $+\lambda \rightarrow \varphi$.
(g) Jve stands for $\neg \forall v \neg \varphi$, so h) (d), we weed to pove $\vdash \forall \sim \neg \varphi \rightarrow \sim \varphi(t / v)$. And this follows Is instantiation axion (u).

Constant Substitution Lemma. Lt φ be a σ-formula in which r is a tree varialee, and let T be a σ-theory. Let c be a constant symbol that is not in 0 . There $T \vdash \varphi(c / v)$ if $T \vdash \varphi$.

In other words, a new constant sgabol has the same cole as a tree variable. Proof. $\&$ Suppose $T \vdash \varphi$. Then h_{y} geverclizction axiom ((5), $T 1-\forall v \varphi$, so instantiation gives $T \vdash \varphi(c / v)$.
\Rightarrow Requires induction on the length of a prof of $\varphi(C / J)$ from T. Miss amounts to doming ht if a bocimla $\varphi(c / v) \in \operatorname{Axion}(\sigma \cup\{c\})$ then $\varphi \in$ Avion (σ), which one checks by hand, axioms, axiom. left for HW

Syntactic versions of consistency and woppletenen.
Dot. Call a σ-theory 4

- consistent if there is no σ-sentence φ such that $T \vdash \varphi$ and $T \vdash \neg \varphi$.
- syntactically σ-complete if for each σ-sesterce $\varphi, T \vdash \varphi$ or $T \vdash-\varphi$.
- σ-maximal consistent if it is consistent and br each σ-sentence φ, $\varphi \in T$ or $\rightarrow \varphi \in T$.

Prop. For a σ-皵年 T, the following are cquiraleat:
(1) T is consistent.
(2) $T \nvdash \downarrow$.
(3) $T \nLeftarrow \varphi$ for sone σ-suatrance φ.

Proof. (2) $\Rightarrow(3)$. Trivial.
$(1) \Rightarrow(2)$. Base $T+\tau$, (1) says that T cabot prove $\neg T=d$.
(3) $\Rightarrow(1)$. We show $\neg(1) \Rightarrow \rightarrow(3)$. Suppose $T \vdash \psi$ and $T \vdash \rightarrow \psi$ for sone σ-senthence ψ. Then for och σ-sentence φ, re have $T \vdash \psi \rightarrow(\neg \psi \rightarrow \varphi)$, so b_{y} tao applications of MP, we get $T \leftarrow \varphi$.

Compactumen for t. For a σ-thwon T and a σ-formala φ, if $T \not P \varphi$ then $T_{0}+\varphi$ for sone finite subthoon $T_{0} \subseteq T$,
Preof. Pcoots are tinite!

